Low Mass Higgs Search with H -> bb decay at the Tevatron

Adrian Buzatu, University of Glasgow On behalf of the CDF and DZero Collaborations

Higgs Hunting 2012, 19 July 2012

RA (now)

MSc, PhD at CDF

Outline

□ Standard Model Higgs boson searches

- > Higgs boson searches
- > Higgs decays to bottom quark (bb) pairs

□ Tevatron Combination for H to bb decay

- Statistical Inference & Systematic Uncertainties
- ➤ Log Likelihood Ratio and p-values
- Expected and Observed Upper Limits
- > Interpretation

Standard Model Higgs Boson

Motivation

- ➤ Only elementary particle predicted by the Standard Model (SM) not yet observed. Predicted in 1964, it explains
 - spontaneous symmetry breaking
 - o the masses of the electroweak bosons, the masses of fermions

Mass – only free parameter for the SM Higgs boson

- ➤ Before ICHEP 2012, direct searches at ATLAS and CMS at the LHC superseded previous limits at the Tevatron and LEP experiments
 - o masses < 115.5 GeV/c² and > 127 GeV/c² excluded at 95% CL
- > Indirect electroweak fits
 - o masses > 152 GeV/c² excluded at 95% CL
- ➤ ATLAS & CMS announced the observation a new elementary particle with mass around 125 GeV/c², in decays to di-photon and di-Z-boson, consistent with the SM Higgs boson; but is it?

☐ Higgs production is a very rare process

The Tevatron Accelerator

- \triangleright p-pbar collisions at 1.96 TeV, $L_{peak} = 4.3 \times 10^{32} \, cm^{-1} s^{-1}$
- ➤ Delivered ~12 fb⁻¹ full data set before shutdown on 30 Sept 2011
- ➤ Results presented today use the full data after data quality requirements ~ 10 fb⁻¹

Higgs Production and Decay

- ➤ For masses smaller than 135 GeV/c² the Higgs boson decays mostly to bottom quark (bb) pairs
- > At 125 GeV/c², BR: 57.8% (bb), 21.6% (WW), 2.67%(ZZ), 0.23%(\(\naggregarr)\) \(\naggregarr)
- Need to observe the bb decay of the newly observed ~ 125 GeV/c² boson by ATLAS and CMS, to test if it is indeed the SM Higgs boson

Divide, Conquer, Combine

- Divide data in different analysis channels based on topology
- Optimize each channel individually
- Primary s/b discriminant is the dijet invariant mass
- ➤ Heavy use of multivariate techniques, adding other kinematic information in addition to dijet invariant mass
 - Artificial Neural Networks
 - Boosted Decision Trees, etc
- Combine all channels, both from CDF and DZero
- See Friday 10 am talk by J. Haley on Tevatron SM Higgs combination

H -> bb Searches

- > CDF/DZero search for SM H -> bb using Tevatrons's full data set
- > Production mechanisms
 - Gluon fusion not feasible for bb decays: 10⁹ more multijet bkg
 - Associated production VH (in this talk), also part of the full Tevatron dataset combination: hep-ex:1207.0449

Analysis Strategy - 1

- > WH as an example
- Two b-tagged jets
- Corrected dijet invariant mass (mjj)
- Multivariate final discriminant (MVA) using mjj and other 5-6 other variables: MET, HT, SumtET, etc

Higgs Hunting 2012: SM H->bb Search at Tevatron

Adrian Buzatu

Analysis Strategy - 2

- Several b-tagging categories grouping similar s/b bins increases sensitivity over all categories summed up
- Increased charged lepton efficiency by introducing new categories with less stringent reconstruction criteria
- Increased trigger efficiency by including new triggers (e.g. novel trigger combination method arXiv:1206.4813 CDF)
- > Search for a broad excess in the mjj distribution
- Improving the mjj resolution is key (e.g. neural-network-based correction to the b-jet energy arXiv:1107.3026 CDF)
- Use shape of multivariate discriminants obtained by taking as input mjj (best input), and also other kinematic information in the event

b Tagging

- Both CDF (new) & DZero use multivariate techniques (MVA) to improve the b-tagging algorithms
- Displaced vertices; large track impact parameters, muon in jet
- Typical efficiencies: 40-70%; Typical mistag rates: 1-5%
- ➤ Since last iteration, CDF combined existing b tagging algorithms into a MVA tagger, called **HOBIT** (arXiv:1205.1812), which improves efficiency by 20% while keeping the same mistag rate.
 - Since double-tagged category is already very pure, the efficiency is crucial

Validation in Z -> bb Searches - 1

- Search for a bump in the dijet invariant mass
 - Sum all lvbb, llbb, vvbb channel
- > Then subtract backgrounds from data
 - Except WZ and ZZ, bkg fit to data assuming no Higgs signal

Other MVA Examples

Higgs Hunting 2012: SM H->bb Search at Tevatron

Signal (s) to background (b) Ratio

> Sum final discriminants after rebinning by log(s/b)

- Fill a histogram with the log(s/b) value weighted by the number of data points for each bin of the MVA discriminants of each channel
- Fit bkg to data within bkg rate and shape systematics for each channel, then sum lvbb, llbb, vvbb channels
- o data agrees with background
- best Higgs data candidates at high s/b
- \triangleright Shown for m_H=125 GeV/c²

Higgs Hunting 2012: SM H->bb Search at Tevatron

Integrated Expected Signal

- Integrated distributions of s/b, starting from the high-s/b-value side (most pure data in the left bins below)
 - Statistical-only errors on data, correlated point to point
- For a signal given by m_H=125 GeV/c², the data agree more with the s+b than the b-only hypothesis

Higgs Hunting 2012: SM H->bb Search at Tevatron

Adrian Buzatu

- Subtract backgrounds from data in the log₁₀(s/b) plot
- ➤ Shown for m_H=125 GeV/c²

Higgs Hunting 2012: SM H->bb Search at Tevatron

Validation in Z -> bb Searches - 2

- ➤ Analysis (hep-ex:1203.3782)
 - VZ (V=W,Z) with Z->bb, using the same lvbb, llbb, vvbb channels and their respective analysis techniques
 - Treat WW as background. Assume SM WZ and ZZ o ratio
- \blacktriangleright Measure $\sigma(WZ) + \sigma(ZZ) = 4.47 + /-0.64(stat) + /-0.73(syst)$
 - Consistent with the SM
 - Consistent with the SM
 4.6 standard deviations above the background-only hypothesis

MVA ordered by s/b

Statistical Approaches

□ Bayesian and Modified Frequentist methods crosscheck each other

- > At each Higgs boson mass, they agree within 10%
- ➤ On average, they agree within 1%
- > Both rely on distributions of the final discriminants
 - not counting experiments

□ Rate and shape systematics

- > Some correlated across experiments and channels
 - Theoretical uncertainties on predictions for signals and backgrounds
 - Luminosity
- > Rest either correlated among sub-channels
 - Charged lepton, trigger, b-tagging efficiencies
- > Or not
 - Fake object identification, data-driven background modelling

Log Likelihood Ratio (LLR) from CL_s

- Separation between LLR_b and LLR_{s+b} medians illustrates the search sensitivity. Closeness of LLR_{obs} to LLR_b (LLR_{s+b}) illustrates a preference for the b-only (s+b) hypothesis for that mass point
- ➤ Broad (115-145 GeV/c²) excess larger than 2 standard deviations

Local p-values for 1-CL_b and CL_{s+b}

- ➤ Minimum local p value for 1-CL_b ~ 8.10^{-4} (3.2 local significance, 2.9 global significance) at m_H=135 GeV/c²
- ➤ CL_{s+b} shows the same broad excess at 115-145 GeV/c²

Higgs Hunting 2012: SM H->bb Search at Tevatron

Fit H to bb signal σ·BR to data

□ Expect to exclude at 95% CL:

 $[100 - 116] \text{ GeV/c}^2$

□ Exclude at 95% CL:

[100 - 106] GeV/c²

□ Tevatron combination still most sensitive in H->bb

Conclusions

- ➤ CDF and DZero combined Higgs to bb searches using the full Tevatron dataset, ~ 10 fb⁻¹ / experiment
- > Validated the techniques in a VZ search with Z->bb
 - 4.6 standard deviations excess above bkg, measured cross section consistent with SM
- > Combined three VH channels (lvbb, llbb, vvbb)
 - Most sensitive search in this channels
 - o Expected 95% CL exclusion: [100 116] GeV/c²
 - o **Observed** 95% CL exclusion: [100 106] GeV/c²
 - A broad excess larger than 2 s.d. is seen in 115-145 GeV/c²
- ➤ Result consistent with a 125 GeV/c² SM Higgs boson
- ➤ The bb decay is essential to establish if the SM Higgslike boson observed by both ATLAS and CMS is indeed the SM Higgs boson

Backup Slides

Bayesian Method

Bayesian Posterior Probability

$$p(R|\vec{n}) = \frac{\int \int d\vec{s}d\vec{b}L(R,\vec{s},\vec{b}|\vec{n})\pi(R,\vec{s},\vec{b})}{\int \int \int dRd\vec{s}d\vec{b}L(R,\vec{s},\vec{b}|\vec{n})\pi(R,\vec{s},\vec{b})} \Rightarrow \int_0^{R_{0.95}} p(R|\vec{n})dR = 0.95$$

$$R = (\sigma \times BR)/(\sigma_{SM} \times BR_{SM}), \ R_{0.95} : 95\% \text{ Credible Level Upper Limit}$$

$$\vec{s}, \vec{b}, \vec{n} = s_{ij}, b_{ij}, n_{ij} \text{ (\# of signal, background and observed events in j-th bin for i-th channel)}$$

$$\pi : \text{Bayes' prior density}$$

Combined Binned Poisson Likelihood

$$L(R, \vec{s}, \vec{b} | \vec{n}) = \prod_{i=1}^{N_{\text{channel}}} \prod_{j=1}^{N_{\text{bin}}} \frac{\mu_{ij}^{n_{ij}} e^{-\mu_{ij}}}{n_{ij}!}$$

Principle of ignorance

for the number of higgs events (instead of higgs Xsec)

$$\pi(R, \vec{s}, \vec{b}) = \pi(R)\pi(\vec{s})\pi(\vec{b}) = s_{tot}\theta(Rs_{tot})\pi(\vec{s})\pi(\vec{b})$$
 $s_{tot} = \Sigma_{i,j}s_{ij}$: Total number of signal prediction $\pi(x) = G(x|\hat{x}, \sigma_x) \quad (x = s, b) \quad \hat{x}$: expected mean, σ_x : total uncertainty

Modified Frequentist Method

- \Box H₁ = test hypothesis (signal + background)
- \Box H₀ = null hypothesis (background only)
- \Box LLR = -2 In p(data|H₁)/p(data|H₀)
- □ 2 p-values: 1-CL_b and CL_{s+b}
- □ 1-CL_b = probability for an upward background fluctuation to create the background-plus-signal-like data excess
 - $\Box \quad 1-CL_b = p(LLR <= LLR_{obs}|H_0)$
- \Box CL_{s+b} = probability for a downward signal-plus-bkg fluctuation to create a background-only-like data
 - \Box $CL_{s+b} = p(LLR > = LLR_{obs}|H_1)$
- \Box $CL_s = CL_{s+b}/CL_b$. Exlusion of H_1 if $CL_s < 0.05$

Sensitivity at 125 GeV/c²

- □ Sensitivity (95% CL expected upper limits) in H->bb in VH, where V decays to two charged leptons and H->bb
- □ Tevatron (CDF + Dzero) 1.40 x SM
- ☐ CMS 1.64 x SM
- → ATLAS no VH-only combo yet
- ☐ For CMS 37% more luminosity (at the same analysis techniques) will be enough to catch up with Tevatron
 - > This will be achieved in 2012 data taking